

Institute for Biohealth Innovation

College of Engineering and Computing

SELECT PUBLICATIONS

- P. Kang et al., Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light: Science & Application 7 (2018).
- P. Kang et al., Crumpled graphene photodetector with enhanced, strain-tunable and wavelength-selective photoresponsivity. Advanced Materials 28, 4639-4645 (2016).
- P. Kang et al., Bioelectronics with two-dimensional materials. *Microelectronic* Engineering 161, 18-35 (2016).
- M. Kim *et al.*, Stretchable crumpled graphene photodetector with plasmonically-enhanced photoresponsivity. *Nanoscale* 9, 4058-4065 (2017).
- P. Kang et al., Nanophotonic detection of freely interacting molecules on a single influenza virus. Scientific Reports 5, 12087 (2015).

Pilgyu Kang, PhD

Assistant Professor, Department of Mechanical Engineering Quantum Science and Engineering Center

Education

PhD, Mechanical Engineering, Cornell University

Key Interests

Nanomaterials | Atomically-thin 2D Materials | Micro/Nano Mechanics | Micro/Nano Manufacturing | Nano-photonics | Opto-Fluidics | Optoelectronics | Plasmonics

CONTACT

Phone: 703-993-5973 | Email: pkang7@gmu.edu Website: <u>http://pilgyukang.info/</u>

Research Focus

My research focuses on fundamental studies of mechanics and photonics with nanomaterials at the micro and nano scale. I aim to create high-performance materials with new functionalities in mechanical, optical, and electrical properties. The main approach for creating the functionalities is nanostructuring of nanomaterials by using micro-/nanomanufacturing and micro-/ nanofabrication techniques. Nanomaterials explored include atomically-thin 2D materials such as graphene and transition metal dichalcogenide (TMD) monolayers (e.g. MoS2) as well as photonic materials such as silicon, silicon nitride, and dielectrics. Based on the approach, I explore various fields including nanophotonics, optofluidic, optoelectronics, and plasmonics to achieve high performance materials and devices for broad applications of Nano Bio Sensors.

Current Projects

- 3D porous graphene embedded with palladium nanoparticles for ultrasensitive electrochemical sensing: This project aims to investigate electrochemistry of homogeneous hybrid nanostructures based on porous graphene.
- Atomically-thin photodetectors by crumple-nanostructuring of graphene-MoS2 heterostructures: The objective of this project is to investigate optoelectronic properties of heterogeneous layered structures of 2D materials.
- Laser nanomanufacturing of porous nanostructured graphene and hybrid nanostructures: This
 project aims to develop advanced nanomanufacturing technology to synthesize novel
 architectured nanomaterials using a laser.
- Photoelectrochemistry of crumpled nanostructured 2D materials: This project aims to investigate electrochemical properties of 2D material nanostructures under light illumination for applications in sensing, energy storage and conversion, supercapacitors, solar cells, and fuel cells and batteries.

ibi.gmu.edu